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[1] The bias in periodogram spectral estimators is computed as a function of the sample
size N by assuming a model power spectrum that decays like f�a at high frequencies.
For a = 2, it is shown that when the aliasing of the measured power spectrum is properly
taken into account the bias in the ‘‘raw’’ periodogram is nearly independent of
frequency for large N. For the range of values 1.7 ] a <2, an upper bound on the bias is
provided by the case a = 2. Theoretical calculations of the maximum absolute bias as a
function of N are used to determine when the periodogram is approximately unbiased
and when the bias is significant enough to require the use of a modified periodogram
which incorporates data tapering, also called data windowing. For solar wind velocity data
acquired by the ACE spacecraft and a chosen low frequency cutoff of 10�7 Hz, the bias in
periodogram spectral estimators is found to be less than 4% for sample sizes N greater
than 216 = 65536. This corresponds to a 49 day record of 64 s data.
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1. Introduction

[2] Calculations of power spectra based on a single
periodogram without a data taper or data window may be
significantly biased. It has long been known that for
stationary stochastic processes with power spectra charac-
terized by a large dynamic range, the ‘‘raw’’ periodogram
may exhibit large biases, even for very large sample sizes N
[Percival and Walden, 1993; Thomson, 1977]. It is also well
known that such biases may be reduced by employing a
modified periodogram that includes a data taper or data
window or by using more advanced nonparametric techni-
ques such as the multitaper method [Thomson, 1982;
Percival and Walden, 1993].
[3] The important question is: for a given time series with

a particular spectrum, how large must N be chosen so that
the bias errors in the periodogram are negligible? Or, in
other words, for what values of N is tapering unnecessary?
These considerations are important for improving the pre-
cision of spectral estimates and for the accurate estimation
of power law indices such as those observed in the solar
wind. The latter issue is of fundamental importance in solar
wind physics and in the theory of turbulence in collisionless
magnetized plasmas [Goldstein and Roberts, 1999].
[4] The bias error of a spectral estimator Ŝ( f ) is the amount

by which the first moment of the estimator differs from the
true power spectral density S(f). If the two are equal so that

E Ŝ fð Þ
� �

¼ S fð Þ; ð1Þ

where E denotes the mathematical expectation, then Ŝ( f ) is
called an unbiased estimator of the power spectrum S( f ).
The difference E{Ŝ( f )} �S( f ) is called the bias of the
estimator Ŝ( f ).
[5] The bias error is a local property, that is, it is a

function of the frequency f. If the spectrum is continuous
and slowly varying in the neighborhood of a point f0, then a
constant offset between the expectation E{Ŝ( f )} and the
power spectrum S( f ) gives rise to a constant bias in the
neighborhood of f0. In general, the first moment of
the periodogram spectral estimator may be expressed in
the form

E ŜN fð Þ
� �

¼
Z fNQ

�fNQ

S f 0ð ÞFN f � f 0ð Þ df 0; ð2Þ

where fNQ = 1/2Dt is the Nyquist frequency and

FN fð Þ ¼ Dt sin2 Npf Dtð Þ
N sin2 pf Dtð Þ

ð3Þ

is the Fejér kernel [see Priestley, 1981, equation 6.2.11 or
Percival and Walden, 1993, equation 198c]. Equation (2)
shows that the first moment is a ‘‘smoothed’’ version of
S( f 0) obtained by first multiplying by the approximate delta
function FN( f � f 0) and then integrating with respect to f 0.
As a consequence, if S( f ) contains a narrow peak at the
frequency f0, then the first moment (2) contains a smoothed
peak having a wider line width and reduced amplitude. In
this example, the bias in the neighborhood of f0 is frequency
dependent.
[6] The purpose of this study is to explicitly compute the

bias error for a model power spectrum and to show that for
high pass filtered solar wind velocity data with a low-
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frequency cutoff of 10�7 Hz and a sampling period of 64 s,
the bias in the raw periodogram is negligible for values of N
on the order of 3 � 104. More specifically, the bias is less
than 8% for all frequencies of interest if N > 215 = 32768
and the bias is less than 4% for all frequencies of interest if
N > 216 = 65536. For such large values of N, data windows
are probably unnecessary. However, for smaller values of N,
the bias in the periodogram should probably be reduced by
using data tapering or some other technique.
[7] While the results presented here pertain to solar wind

velocity data obtained at 1 AU in the ecliptic plane by the
SWEPAM instrument on board NASA’s Advanced Compo-
sition Explorer (ACE) [McComas et al., 1998] the same
analysis method may be applied to any time series possessing
similar spectral characteristics in the observed frequency
range.

2. Method of Analysis

[8] The periodogram is an asymptotically unbiased
spectral estimator in the limit as the sample size N
approaches infinity. In practice, however, it is necessary to
know how large N must be chosen in order for the bias to be
negligible. One way to estimate N is to assume a specific
functional form for the power spectrum S(f) and then
directly compute the bias

E ŜN fð Þ
� �

� S fð Þ ð4Þ

as a function of N and f. This is the approach adopted here.
In equation (4), the expectation operator E denotes the
ensemble average (mathematical expectation) and

ŜN fð Þ ¼ Dt

N

XN�1

n¼0

Xn e
�i2pnf Dt

�����
�����
2

ð5Þ

is the periodogram for the sample X0, X1, . . ., XN�1 of size
N.
[9] For solar wind data that has been high pass filtered

with a filter cutoff frequency of 10�7 Hz in order to remove
any DC component or slowly varying trends while passing
the fundamental solar rotation frequency 4.3 � 10�7 Hz, the
spectrum can be crudely approximated by the function

S fð Þ ¼ S0

1þ f =f0j ja ; ð6Þ

where S0 is constant, f0 = 10�6 Hz, and a 	 1.7. Previous
experience with solar wind spectra at 1 AU suggests that
this is a reasonable hypothesis for frequencies in the
turbulent inertial range where typically a ’ 1.7 [Bavassano
et al., 1982; Goldstein et al., 1995; Goldstein and Roberts,
1999; Leamon et al., 1998; Marsch, 1991; Matthaeus and
Goldstein, 1982; Tu and Marsch, 1995]. For mathematical
simplicity, it is convenient to choose the value a = 2 in
equation (6) since the results obtained are not expected to be
sensitive to the precise value of a. This is checked later in
section 3.
[10] As a consequence of high pass filtering, the spectrum

actually vanishes at f = 0. This is neglected in the model (6)
because it does not significantly effect the bias for frequencies

in the passband. In fact, the approximation of a flat spectrum
near f = 0 in equation (6) can only increase the bias for
frequencies in the passband.
[11] Assuming that the observed stochastic process pos-

sesses the power spectrum (6), then, after sampling, the
sampled power spectrum takes the form

Sa fð Þ ¼
X1
n¼�1

S f � nfsð Þ; ð7Þ

where fs = 1/Dt is the sampling frequency and S(f) is given
by equation (6). Equation (7) shows that the sampled power
spectrum contains aliasing. The subscript ‘‘a’’ stands for
‘‘aliased.’’ The aliased power spectrum (7) is the power
spectrum which one is attempting to estimate from the data.
In the case a = 2, the infinite series (7) can be computed in
closed form using the theory of residues [Levinson and
Redheffer, 1970] with the result

Sa fð Þ ¼ pS0f0Dt
tanh pf0Dtð Þ cos2 pf Dtð Þ þ ctnh pf0Dtð Þ sin2 pf Dtð Þ

;

ð8Þ

where jfj � 1/(2Dt). It should be noted that this is equivalent
to the spectrum of a first order autoregressive process,
namely,

Sa fð Þ ¼ s21Dt

1� fe�i2pf Dtj j2
; ð9Þ

where s1
2 = pf0S0(1 � f2) and f = e�2pf0Dt [Percival and

Walden, 1993, equation (392b)]. The latter form is derived
from the discrete Fourier transform of the autocovariance
sequence (11).
[12] It is important to note that the aliased power spec-

trum Sa( f ) is the correct spectrum to use when computing
the bias (4). This is the power spectrum of the sampled
signal, the signal actually measured. The two power spectra
S( f ) and Sa( f ) are plotted in Figure 1 together with an
unsmoothed periodogram obtained using ACE solar wind
data at 1 AU. The periodogram was computed using a
rectangular data window (no tapering) and a sample size of
N = 218 = 262144. ACE level II data for the period 1998
through 2004 were obtained from the ACE Science Center
and preprocessed using linear interpolation to fill any
missing data values followed by high pass filtering with a
linear FIR filter having a cutoff frequency of 10�7 Hz.
Those portions of the processed data containing filter
transients were then deleted. The data used to compute
the periodogram in Figure 1 spans approximately the first 6
months of 1999.
[13] Having determined an appropriate functional form

for the power spectrum, the next task is to compute the
expected value of the periodogram in equation (4). The
expected value of the periodogram may be written

E ŜN fð Þ
� �

¼ Dt
XN�1

n¼�N

1� nj j
N

� �
sn e

�i2pnf Dt ; ð10Þ

where sn is the true autocovariance function of the (filtered)
process [Percival and Walden, 1993, equation (198a)]. That
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is, sn is the inverse Fourier transform of equation (6)
evaluated at the times t = nDt. The inverse Fourier transform
of S(f) in equation (6) yields

sn ¼ pf0S0 e�2p nj jf0Dt ; ð11Þ

where �1 < n < 1. For any value of N, the sum (10) is
easily evaluated using standard fast Fourier transform (FFT)
algorithms.

3. Results of the Calculations

[14] The relative (absolute) bias error, or normalized bias
error, is conveniently represented in the form

Bias Error ¼
E ŜN fð Þ
� �

� Sa fð Þ
Sa fð Þ

�����
�����; ð12Þ

where E{ŜN(f)} is given by equation (10) and Sa(f) is given
by equation (8). Results for the computed bias error as a
function of frequency are shown for three different values of
N in Figure 2. The calculations extend all the way up to the
Nyquist frequency 1/(2Dt) = 7.8 � 10�3 Hz. The results
indicate that, in general, the bias decreases as N increases.
An important conclusion is that for fixed N, the relative bias
is nearly a constant function of frequency except for a
change in algebraic sign near f0 = 10�6 Hz.
[15] To show how the results in Figure 2 depend on the

power law exponent a in equation (6), the bias error has
been computed for the cases a = 1.9, 1.8, and 1.7 by the
methods described in Appendix A. Results for the sample
size N = 216 are shown in Figure 3. At low frequencies the
bias error is independent of a. Note that while the bias error
is essentially independent of frequency in the case a = 2, the

bias error is a decreasing function of frequency for a < 2
(neglecting the change in algebraic sign near f0 = 10�6 Hz).
The important conclusion to be drawn from Figure 3 is that
the case a = 2 provides an upper bound for the bias error
when a < 2. It should be mentioned that the dip in the curve
for a = 1.7 that occurs near the Nyquist frequency in Figure
3 is probably not a real effect but the result of a loss of
accuracy in the numerical calculations.
[16] The maximum bias error for the case a = 2 is plotted

as a function of N in Figure 4. Depending on how much bias
one considers to be acceptable, Figure 4 can be used to
determine the minimum sample size N needed to attain a

Figure 1. Periodogram of the radial solar wind velocity
(blue) with N = 218 = 262144, model power spectrum S( f )
(white), and aliased power spectrum Sa( f ) (red). The latter
two functions are computed from equations (8) and (6)
using f0 = 10�6 Hz and Dt = 64 s.

Figure 2. Bias error versus frequency for (top to bottom)
N = 216 = 65536, N = 219 = 524288, and N = 222 = 4194304.

Figure 3. Bias error as a function of frequency for
different power law exponents a in the power spectrum (6).
The sample size is N = 216.
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given level of bias for an unwindowed periodogram. For
example, if N 
 215 = 32768, then the bias is less than 8%.
This bias level is tolerable in many applications. A data
record of size N = 215 corresponds to 24.27 days of ACE
velocity data.
[17] For the practitioner of spectral estimation, the anal-

ysis presented in this paper is not the only way to evaluate
the bias of a periodogram. A practical way to determine
whether or not a periodogram may be biased is to compare
spectral estimates obtained using different data tapers, or
data windows, to spectral estimates obtained without using
a data taper. If visual examination of the resulting spectra
reveal no noticeable differences, then this suggests that the
bias in the raw periodogram is probably negligible.

4. Discussion and Conclusions

[18] In summary, the bias error of the periodogram
spectral estimator has been calculated as a function of the
sample size N for a stationary, continuous time stochastic
process with power spectrum (6) which is sampled at the
rate Dt. Using parameters typical for ACE solar wind data
(a ’ 1.7, f0 = 10�6 Hz, and Dt = 64 s), it was found that the
bias errors become negligible for values of N on the order of
3 � 104. For values of N larger than this, the periodogram
yields an approximately unbiased spectral estimate. For
smaller values of N, the bias becomes significant and must
be reduced by tapering or by other methods. It is important
to note that throughout this study nothing has been said
about the variance of the periodogram. The variance of the
periodogram and variance reduction methods are not
addressed in this paper.
[19] The analysis presented here shows that the effects of

aliasing on the spectrum must be taken into account in order
to correctly compute the bias. Without the effects of alias-
ing, that is, if S(f) is used instead of Sa(f) in equation (12),
then the magnitude of the computed bias would be approx-
imately 100% for frequencies near the Nyquist frequency
(for the model spectrum studied here). Moreover, this result

is practically independent of N. Therefore it is essential that
the bias be measured relative to the aliased spectrum.
[20] It should be emphasized that the results shown in

Figure 2 and 4 only apply to the special case of the power
spectrum (6) with parameters f0 = 10�6 Hz and a = 2, and
for the sampling rate Dt = 64 s. For different values of the
parameters f0 and Dt the bias can be computed using the
method described here, but the results would differ from
those shown in Figure 2 and 4.
[21] In the case a 6¼ 2, the approach used here is still

applicable but requires more work as described in Appendix
A. When a 6¼ 2, equation (8) no longer applies and it is
necessary to evaluate the sum (7) numerically. This can be
done provided a 
 1.7 but is difficult for a < 1.7.
Computations for 1.7 � a < 2 indicate that the bias
decreases as a decreases, so it is reasonable to conjecture
that the case a = 2 provides an upper bound on the bias for
1 < a < 2. For the computations, to evaluate the autocovar-
iance function sn of the process one must compute the
inverse Fourier transform of equation (6). This can be done
numerically using the FFT.
[22] Finally, it should be kept in mind that the smooth

approximation of the spectrum given by equation (6)
neglects any localized features which may be present in
actual solar wind data such as spectral peaks at the solar
rotation frequency 4.3�10�7 Hz and its harmonics. When
such features are present in the data the bias errors will be
different than the results obtained here, especially in the
neighborhood of the spectral peaks. The effects of localized
spectral features on the bias errors are not taken into account
in this study.

Appendix A: Numerical Methods

[23] This appendix describes the numerical calculation of
the bias error in the case when a 6¼ 2, or, more specifically,
when 1.7 � a < 2. The calculation is divided into two parts:
the calculation of the aliased spectrum (7) and the calcula-
tion of the expected value of the periodogram, that is,
equation (10). Because the bias (12) is the difference of
two quantities that are approximately equal for large N, both
terms must be computed with equal accuracy e. Moreover,
this accuracy must be much less than the bias error which is
to be computed.

A1. Aliased Spectrum

[24] The aliased spectrum is given by

Sa fð Þ ¼
X1
n¼�1

S0

1þ jf � nfsj=f0ð Þa ; ðA1Þ

where fs = 1/Dt is the sampling frequency, f0 = 1 � 10�6 Hz,
and jfj � fNQ = fs/2. The terms of the series behave
asymptotically like 1/jnja as n ! 1. Therefore like the

series
X1

n¼1
1/na, the series (8) may be computed by

truncation after N terms (provided a is not too close to 1).
From the estimate

X1
n¼Nþ1

1

na
�

Z 1

Nþ1

1

x� 1=2ð Þa dx ¼
Z 1

Nþ1=2

1

xa
dx � 1

a� 1ð ÞNa�1
;

ðA2Þ

Figure 4. Maximum bias error in the raw periodogram as
a function of the sample size N.
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the truncation error for the series (8) is

eN 	 2
f0

fs

� �a X1
n¼Nþ1

1

na
� 2

f0

fs

� �a
1

a� 1ð ÞNa�1
: ðA3Þ

This truncation error is used below. Note that for the seriesX1
n¼1

1/na, the relative error satisfies

e ¼

X1
n¼Nþ1

1=naX1
n¼1

1=na
�

Z 1

Nþ1

x� 1=2ð Þ�a
dx

Z 1

1

xþ 1=2ð Þ�a
dx

� 3

2N

� �a�1

: ðA4Þ

To evaluate the series (8) to within an error e, proceed as
follows. Let the relative error e > 0 be given.
[25] 1. Set N = (3/2)e�1/(a�1) in accordance with equation

(A4).
[26] 2. Evaluate the sum (7) by summing in reverse order,

that is, from jnj = N to jnj = 0.
[27] 3. Check that (eN/sum) � e, where eN is given by

equation (A3).
[28] One should be careful not to allow N to become too

large. This can happen when the desired error e is too small.
Even though the accumulation of roundoff errors is not a
concern, it is a good idea in practice to limit N to 105 or 106.
For the calculations that were performed to obtain Figure 3,
e = 10�4.

A2. Expected Value of the Periodogram

[29] For 1.7 � a < 2, the expected value of the periodo-
gram E{ŜN( f )} given by equation (10) is computed in two
stages. First, the autocovariance function s(t) is computed
by evaluating the inverse Fourier transform of the power
spectrum S( f ) in equation (6). This is accomplished by
means of an FFT of length 2M as discussed below. In the
second stage of the calculation, equation (10) is evaluated
using an FFT of length 2N to compute the DFT of the
sequence (1 � jnj/N)sn, where jnj � N. More details of the
numerical methods are as follows.
[30] By symmetry, the autocovariance function may be

written

s tð Þ ¼
Z fc

�fc

S fð Þ exp i2pf tð Þ df þ 2

Z 1

fc

S fð Þ cos 2pf tð Þ df ;

ðA5Þ

where fc is a cutoff frequency introduced for the purpose of
numerical calculation and the power spectrum S(f) is
defined by equation (6). If the cutoff frequency is made
sufficiently large, then the error, given by the second term
on the right-hand side of equation (A5), may be made as
small as desired. The first integral in equation (A5) is then
approximated by a Riemann sum to obtain

s tð Þ 	
XM�1

k¼�M

S fkð Þ exp �i2pfktð ÞDf ; ðA6Þ

where fk = kDf and Df = fc/M. The approximation of the first
integral by a Riemann sum can be made as accurate as

desired by increasing M. If the sum is evaluated at the times
t = n/2fc, then the previous equation becomes

s t ¼ n=2fcð Þ 	 fc

M

XM�1

k¼�M

S fkð Þ exp �i2pkn=2Mð Þ: ðA7Þ

This is now in the standard form of the discrete Fourier
transform (DFT) and is readily evaluated by means of the
fast Fourier transform (FFT). The accuracy of the
approximation (A7) is determined by the choice of fc andM.
[31] To evaluate equation (10), the autocovariance func-

tion sn = s(nDt) must be known at the times t = nDt. From
equation (A7), this implies that fc must be a multiple of the
Nyquist frequency fNQ = 1/2Dt, that is, fc = mfNQ where m is
a positive integer. Furthermore, the entire time interval
(�NDt, NDt) covered by equation (10) must be contained
in the interval (�M/2fc, M/2fc) covered by equation (A7).
Hence, one obtains the conditions

fc ¼ mfNQ and M 
 mN ; ðA8Þ

where m is a positive integer. For the calculations performed
in this study, m, M, and N are all integral powers of 2.
[32] For a given value of m (the cutoff frequency), the

solution for E{ŜN( f )} may be computed using FFTs of
increasing size 2M to compute s(t). For the problem at hand
(see Figure 3), adequate convergence is attained for M =
2mN. Setting M = 2mN, one may then compute a sequence
of solutions of increasing accuracy for m = 2, 4, 8, . . . The
error decreases at each iteration until the desired accuracy is
achieved. A relative error on the order of e = 10�4 is
obtained for m = 4096 in the case 1.7 � a � 2. (For the
large values of N considered here calculations for a < 1.7
could not be performed due to the large sizes of the FFTs
involved.) The maximum relative error occurs near the
endpoints of the interval, that is, near the Nyquist frequency.
For calculations in which m = 4096, M = 2mN, and N = 216,
the maximum relative error is estimated from the numerical
data to be roughly 2� 10�4, 4� 10�4, and 9� 10�4 for a =
1.9, 1.8, and 1.7, respectively.

[33] Acknowledgments. I would like to thank D. A. Roberts for
thoughtful comments and the two referees for several recommendations that
led to an improved presentation of the results.
[34] Shadia Rifai Habbal thanks Don B. Percival and Roberto Bruno

for their assistance in evaluating this paper.

References
Bavassano, B., M. Dobrowolny, F. Mariani, and N. F. Ness (1982), Radial
evolution of power spectra of interplanetary Alfvénic turbulence, J. Geo-
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